
::iiii"

....i / iiii .:ii:i̧ i _/......

National Aeronautics and

Space Administration

Ames Research Cente_
Moffett Field, California 94035

ARC 275 (Rev Feb 81)

:_i:i_:_i%i_!_i_iii_ii:i!i_i_•iii!?i!'i!i!!_i!_ii!_!ii!iCi_CI'::
• • i i_ _ :.: ,_: -i i _! ! _!, i



Intercube Communication for the iPSC/860

E. Barszcz"

Report Number: RNR-91-030

29 October 1991

Abstract

In this paper, new functiohs that enable efficient intercube commu-

nication on the Intel iPSC/860 are introduced. Communication between

multiple cubes (power-of-two number of processor nodes) within the In-

tel iPSC/860 is a desirable feature to facilitate the implementation of

interdisciplinary problems such as the grand challenge problems of the

High Performance Computing and Communications Project (HPCCP).

Intercube communication allows programs for each discipline to be devel-

oped independently on the hypercube and then integrated at the interface
boundaries using intercube communication.

"NAS Applied Research Branch, NASA Ames Research Center, Moffett Field, CA 94035.



1 Introduction

In this paper, new functions that enable efficient intercube communication on the

Intel iPSC/860 are introduced. Communication between multiple cubes (power-of-
two number of processor nodes) within the Intel iPSC/860 is a desirable feature to

facilitate the implementation of interdisciplinary problems such as the grand chal-

lenge problems of the High Performance Computing and Communications Project
(HPCCP). Intercube communication allows programs for each discipline to be devel-
oped independently on the hypercube and then integrated at the interface boundaries

using intercube communication. Intercube communication is also useful within a sin-

tie discipline where the physical domain is broken into several zones (computational
domains) to facilitate grid generation or to accomodate bodies in relative motion. For

good load balance, in both interdisciplinary and multizone problems, the number of
computational nodes assigned to a computational domain should match the workload
associated with that domain.

Currently, there are three ways to implement intercube communication on the In-

tel iPSC/860: individual cubes can communicate through the service resource module

(SRM), via a shared file on the concurrent file system (CFS), or allocate a cube large
enough to hold all desired subcubes and manage subcube allocation and communica-

tion from within the user program. An three methods have problems. Communicating
through the SRM is slow because the SRM must receive the message, attach to the

destination cube and then fo_ard the message. Communicating through the CFS is

not much better, since cubes must coordinate access to shared files. Having the user

allocate and partition a single large cube places the burden of partitioning on the user

and makes it more diffcult to do independent development of domain specific code.

Also, a single large cube partitioned into subcubes may lead to poor load balance if

the code for an domain is designed to work with a power-of-2 number of processor
nodes'and the sum over all domains is not a power-of-2 number of nodes.

The intercube communication des_bed in this paper is fast and efffcient. It is

fast because it uses the hypercube wires allowing messages to be sent in parallel with
no bottleneck. It is efficient b_use there is little overhead associated with sending
an intercube message. Overhead is primarily due to the verification and validation

of the destination and contention for the _res from other users communicating with
the S o, CFS.

In addition to interdisciplinary and multizone programs, intercube communication

is useful for functional partitioning of program._. For example, if one cube is generating
a large amount of data, a second cube can be processing the data as it is generated
in parallel.

In the remainder of the paper a discussion dealing with routing, allocation and

contention is followed by the implementation of the intercube communication and

an example demonstrating intercube communication. It is assumed that the reader

is familiar with the Intel iPSC/860 system calls. For more information about the

iPSC/860 see references [1] and [2].

2

......... i:............ iii •i _ •_i

! i ii iii} '



110

100

000

v

111

011

Figure 1: e-cube routing of a message from node 0 to node 7,

2 Routing, Allocation and Contention

In this section, e-cube routing, cube allocation and sources of intercube communica-

tion contention are described followed by a discussion of when intercube communica-

tion may cause intracube communication contention within another cube.

2.1 e-cube Routing

The routing algorithm used on the Intel hypercubes is called e-cube routing. In e-

cube routing, the source address and destination address are XORed and the resulting

nonzero entries indicate which wires the message will traverse. Wires are traversed

starting from the lowest order nonzero and proceed to the highest order nonzero.

In practice, as the message is passed to each new node, the destination address is

XORed with the local address and the message moved across the wire indicated by
lowest order nonzero. When XORing with the local address, if the result has no

nonzero entries then the message has reached its destination. Figure 1 shows the

path a message takes from node 0 to node 7 using e-cube routing.

2.2 Cube Allocation

When allocatinga cube on an Intelhypercube, the physical address of logicalnode

zero must be a multiple of the cube size.The operating system willnot allocatea

cube startingat a node whose physicaladdress isnot a multiple of the cube size.

Also, ifa location is specifiedwhen a cube isrequested, nodes with contiguous

physicaladdresses willbe assigned.Ifcontiguous nodes cannot be assigned,the cube
willnot be allocated.

Ifa location isnot specified,the operating system willallocatea cube ifpossible.

However, _thenodes are not guaranteed to be contiguous. The operating system tries

to allocate contiguous nodes and then looks for other hypercubes ifthere are not

enough contiguous nodes. Figure 2a shows a cube of si_efour formed from contiguous

:Yi/

• i:i

3

i _i!_ ,

, _i_-(!__i_',i_i__iiiiillyi)_)i>
' _ !, i:_: _ _ _i _ :_ • _ (



lO0

o00

11o
/

<,l

111

011

111

lOO

011

0oo 1

(a} (b)

Figure 2: Cubes of size 4 formed from (a) contiguous nodes and (b) noncontiguous
nodes.

nodes whereas Figure 2b shows a cube of size four formed from noncontiguous nodes.

Contiguous node allocation is the most common case [3].

2.3 Intercube Contention

Possible sources of contention for intercube communication are the operating system

downloading programs, users communicating with the SRM, users communicating

with the concurrent file system (CFS)I All of these sources exist and have existed

within current systems and the author is not aware of users complaining about them.

One characteristic of all intercube communication is that it occurs infrequently.

Programs are downloaded once per cube. Programs are I/O bound if they communi-

cate with the CFS to frequently. The SRM is a bottleneck if users communicate with

it to often. Communicating interface boundary data in interdisciplinary or multizone

programs also occurs infrequently.

2.4 Intracube Contention

During intercube communication it is possible to interfere with intracube communica-

tion occuring within another cube. However, if all cubes are formed from contiguously

allocated nodes with starting addresses that are a multiple of the cube size, intercube

communication cannot interfere with intracube communication within another cube.

The potential for intercube communication to interfere with intracube communi-

cation within another cube is demonstrated in Figure 3. In Figure 3 there are two

users, user 1 owns two cubes each of size one (node 0 and node 7) and user 2 owns

one cube of size two (nodes 1 and 3). The cube owned by user 2 is not formed

from contiguous nodes creating the possibility of contention. When user 1 sends a

message from cube 1 to cube 2 (node 0 to node 7), the e-cube routing algorithm re-

quires it to pass between node 1 and node 3 potentially interfering with the intracube
communication of user 2.



r

bll

/

Figure 3: Intracube contention from intercube communication.

Fortunately, when all cubes are allocated from contiguous nodes starting on phys-

ical node addresses that are a multiple of the cube size, intercube communication

cannot interfere with the intracube communication within another cube. To see this,

let the cube size be given by N and the cube dimension by D = log2(N). Since the

starting physical node address must be a multiple of the cube size, the low order D

bits of the address are zero. The N contiguous physical addresses of a cube use the

low order D bits. When sending an intercube message, any bit differences between

the source and destination in the low order D bits are eliminated by sending the

message around inside the local cube 1. At this point, only high order bit differences

are left. Every cube has a natural partner formed from the cube of the same size and

starting address but with the (D + 1) low order bit complemented 2. They are natural

partners because they are the only cubes of size N in the proper locations to form a

cube of size 2N satisfying the contiguous address and starting address constraints. If

the (D+ 1) bit differs between the source and destination, the message will travel be-

tween the two cubes of size N. However, this link cannot be in use by either cube for

intracube communication and so does not cause interference inside the other cube.

By induction it can be shown that given contiguous nodes and starting addresses

that are a multiple of the cube size, intercube communication cannot interfere with
intracube communication within another cube.

3 Implementation

The major premise for the intercube communication implementation is that the num-

ber of cubes and size of cubes required is known and does not change. Static allocation

of cubes is a valid model for any application that has multiple fixed sized computa-

tional domains that need to communicate.

To make intercube communication flexible and easy to support, the intercube

communication mechanism is general and implemented using a small number of new

1Recall that e.cube routing processes bit differences from low :order to high order.

=A cube equal to the whole machine has no partner.

i _

5



routines. Having a generalintercube communicationr:.echanismallowsapplications
to tailor intercube cor_municationto individual needs.Givena small numberof new
routines, lesssupport .s requiredwhen the operating systemor underlying hardware
changes.

This implementation of intercube communication requiresa host program and
eachcube participating in intercubecommunicationto be registered. After all cubes

have been registered and before any communication takes place, information about

each cube and the nodes within each cube is downloaded to all participating nodes.

Then to perform intercube communication, a (cube name, node number) pair is

mapped into a system node address that is passed to the regular communication

routines such as csend. This implies that forced message types [1] and pairwise

exchange [5] will work w;_th intercube communication. Currently, there is a system
it of 10 cubes that ca,.'_ be allocated 3.

-._ Data Structure

The data structure containing information on all cubes registered has the following
fields:

® Local cube name

• Total number of cubes

• For each cube

- Cubename

- Number of nodes

- Mapping function from logical node numbers to system node addresses

For the Intel iPSC/860, with 128 nodes, this data structure is less than 1 KB 4 and is

directly proportional to the totM number of nodes allocated. It is felt that 1 KB is

small enough that each node has a copy of the data structure.

To index into the table, a hash function based on the cube name is used. The

hash function groups the cube name into_blocks of four characters (treating a block

as an unsigned integer), adds them together ignoring overflow and returns the sum

modulo the table size. If the last group has less than four characters, the group is
right justified and then added.

If a collision occurs (the table entry indicated by the hash function is not empty

and not the desired entry), entries on both sides of the hash location are examined.

If collisions occur again, a linear search is started at the hash location plus two. An

empty slot is guaranteed for insertion because the table size matches the maximum

number of cubes th _t can be allocated. When searching for an entry in the table, if

an empty slot is e_ ,untered or the whole table has been searched without finding

the desired entry, t_: cube name is invalid.

3Only nine cubes can be allocated if you have a CFS since the CFS requires a cube.

4This could be compressed significantly at the cost of extra processing: to calculate the system
node addresses.

6

(i!_i _ _ : i ii _ : ._ _: i::i



3.2 New Host Routines

Functional descriptions of the newly implemented host routines are given below and

the actual interfaces to FORTRAN and C are in appendices A and B respectively.

Each cube must be given a unique cube name up to 15 characters in length.

initcubecomm()

Initcubecomm freezes the number of cubes that are participating in intercube

communication, interrogates ....... the operating system for the system node addresses, fills

in the data structure and:then downloads it to all participating nodes. It must be

called before performing any communication.

setactivecube(cube_name)

Setactivecube takes a cube name (up to 15 characters) as an argument, verifies

that the cube is owned by the user, if it is the first instance of the cube name, registers

the cube, and then does an attach and setpid for that cube. Setactivecube is called

every time the the host wants to communicates with a different cube. Sethostpid

must be called before the first call to setactivecube.

sethostpid(pid)

Sethostpid records a single host process identifier that is used for all cubes. The

setpid function is called by setactivecube after attaching to a cube. Sethostpid
must be called once before the first call to setactivecube.

3.3 New Node Routines

Functional discriptions of the newly implemented node routines are given below and

the actual interfaces to FORTRAN and C are in appendices A and B respectively.

cmpn_ame(cube_namel, cube_nameP)

Cmpname is a logical function that takes two cube names as agruments and

returns TRUE if the names match and FALSE if they don't match.

cubemap( cube_name, node)

Cubemap takes a cube name and logical node number as input parameters and

returns the system node address. The system node address can then be passed to

either the csend or isend communication routines 5. Before returning the system

node address, cubemap verifies that the cube is owned by the user and checks that

the node number is valid for that cube.

cubesize(cube_name)

Cubesize returns the size of the specified cube.

initcubecomm()

Initcubecomm downloads the data structure containing information on all par-

ticipating nodes. It must be called before performing any communi=_:ation.

5Existing communication routines recognize system node addresses as well as logical node ad-

dresses so no new communication primitives are required.

7



cube1 cube2

2 0

3 1 1 3

O

start

Figure 4: Ring formed from two cubes of size four.

mycube()

Mycube returns the local cube name.

numcubes()

Numcubes returns the number of cubes willing to participate in intercube com-
munication.

4 Example

As an example of intercube communication, the sample ring code provided by Intel is

modified to send a message around a ring formed from two different cubes which are

joined at logical node one of each cube. Figure 4 shows two cubes of size four linked

together by logical node 1 in each cube to form a single ring. To start a message

around the ring, cubel receives a message from the host describing the length of the

message and the number of times it should go around the ring. After each lap cube1

sends the lap count back to the host. When the message has gone around the required

number of times cubel reports the elapsed time.

Changes made to the host and node programs are shown in appendices C and D

respectively.

4.1 Results

To determine whether the cubemap function has significant overhead, the ring exam-

ple is timed with two cubes of size eight and compared to the ring program using a

single cube of size sixteen. It should be noted that cubemap can be called once and

the destination system node address saved, amortizing the overhead across all laps.

Cubemap is called every lap to see if it has significant overhead.

8



There is no difference in time when sending a 32 byte message 20 times around

the ring formed from two cubes, each of size eight, when compared to sending the

same size message around a single cube of size sixteen 6. The location in decimal and

binary of the two cubes is given in Table 1, The starting address expressed in binary

demonstrate that intercube communication takes place since the addresses differ in

all high order bits.

Cube Size Location :Binary

8 0 0000000

8 120 1111000

Table 1: Cube sizes and locations.

A closer examination of the overhead indicates the communication with the SRM

is the determining factor in the elapsed time. Timings using dclock() calls placed

around cubemap in the node program reveal a cost of 40 microseconds per call to

cubemap. Of this 40 microseconds, 18 microseconds is associated with copying the

FORTRAN string into a C string and setting an end-of-string marker and 22 mi-

croseconds to look up the entry in the table.

5 Summary

Efficient general intercube communication has been implemented using a small num-

ber of new functions. By keeping the number of functions small, any changes to the

operating system or machine can be accommodated easily. By making the routines

general, an application can tailor intercube communication to its needs.

The number and size of cubes involved in intercube communication is static.

Cubes desiring intercube communication must register and receive a data structure

containing information about all participating cubes before performing any commu-

nication. The static allocation model applies to any application that has multiple

fixed sized computational domains or can be functionally partitioned.

The intercube communication routines work from an Iris workstation as remote

host and are callable from either FORTRAN or C. The routines should work on an

Intel iPSC/2 and it is anticipated that they will work on the Intel Delta machine at

CalTech and possibly on the Intel Sigma machine.

Acknowledgements

The author would like to thank Paul Pierce of Intel SSD for discussions and

information about Intel system routines and Sisira Weeratunga of Computer Sciences

Corporation for discussions and beta testing the routines. Sisira is currently using

the routines to implement an interdisciplinary code on an iPSC/860.

References

6This version of the ring program is not Gray coded.

H

9



1. "iPSC/2 andiPSC/860 Programmer'sReferenceManual', Intel Supercomputer

Systems Division, Beaverton, Oregon, April 1991.

2. "iPSC/2 and iPSC/860 User's Guide", Intel Supercomputer Systems Division,

Beaverton, Oregon, June 1990.

3. Private communication with Paul Pierce of Intel Scientific Computers Division.

4. Seidel, S., Lee, M.H., and Fotedar, S., "Concurrent Bidirectional Communica-

tion on the Intel iPSC[860 and IPSC/2", Michigan Technological University

Technical Report CS-TR 90-06 (November 1990).

10

" _i_ • _:: ! ,:i

:i_ _i_i: !_ :



Appendix A: FORTRAN Interface

The FORTRAN interface is presented in style similiar to the one used in the

iPSC/2 and iPSC/860 Programmer's Reference Manual [1].

Synopsis

LOGICAL FUNCTION COMPARE( cubenamel, cubename2)

Parameter Declarations

CHARACTER cubenamel*(*)

CHARACTER cubename_(*)

Return Value

TRUE if cubenamel matches cubename2, FALSE otherwO:g&

Environment

Node

Discussion

Does not check for valid cube names.

Errors

None

11

/



Synopsis

INTEGER FUNCTION CUBEMAP( cubename, node)

Parameter Declarations

CHARACTER cubename*(*)
INTEGER node

Return Value

System node address for the node specified by (cubename, node).

Environment

Node

Discussion

Cubemap takes a cube name and logical node number as input parame-

ters and returns the system node address. The system node address can

then be passed to either the csend or isend communication routines. Be-

fore returning the system node address, cubemap verifies that the cube

is owned by the user and checks that the node number is valid for that

cube.

Errors

cubemap: Invalid Cube Name

Use a valid cube name. Program will hang until killed by user.

cubemap: Invalid Node

Use a valid node number. Program will hang until killed by user.

12

):



Synopsis

INTEGER FUNCTION CUBESIZE(cubename)

Parameter Declarations

CHARACTER cubename*(*)

Return Value

Number of nodes in the cube specified by cubename.

Environment

Node

Discussion

May be called after initeubecomm.

Errors

cu_emap: Invalid Cube Name

Use a valid cube name. Program will hang until killed by user.

13

i_iiiiii• • •..... (: !_



Synopsis

SUBROUTINE INITCUBECOMM()

ParameterDeclarations

None

Return Value

None

Environment

Host, Node

Discussion

On the host, initcubecomm freezes the number of cubes that are par-

ticipating in intercube communication, interrogates the operating system

for the system node addresses, fills the data structure and then downloads

it to all participating nodes.

On the nodes, it receives the data structure from the host.

Initcubecomm must be called on the host and nodes before perfor_ipg
any communication.

Errors

None

14



Synopsis

CHARACTER*15 FUNCTION MYCUBE()

ParameterDeclarations

None

Return Value

Characterstring containingthe nameof the local cube.

Environment

Node

Discussion

May be calledafter initcubecomm.

Errors

None.

15



Synopsis

INTEGER FUNCTION NUMCUBES()

ParameterDeclarations

None

Return Value

Number ,:: 'ubes particip, in intercube communication.

Environment

Node

Discussion

May be called after initcubecomrn.

Errors

None.

16

/

/: i/ !i )



Synopsis

SUBROUTINE SETACTIVECUBE(cubename)

Parameter Declarations

CHARACTER cubename*(*)

Return Value

None

Environment

Host

Discussion

e_e_

Setactivecube takes a cube name as an argument, verifies that the cube

is owned by the user, if it is the first instance of the cube name, registers

the cube, and then does an attach and setpid for that cube. Setac-

t_vecube is called every time the the host wants to communicates with
a different cube.

Sethostpid must be called before the first call to setactivecube.

Errors

setactivecube: Invalid Cube Name

Use a valid cube name. Program will exit.

17



Synopsis

SUBROUTINE SETHOSTP_(pid)

ParameterDeclarations

INTEGER pid

Return Value

None

Environment

Host

Discussion

Sethostpid records a single host process identifier that is used for all

cubes. The setpid function is called by setactivecube after attaching
to a cube.

Sethostpid must be called once before the first call to setactivecube.

Errors

sethostpid: Already Set Host PID

Use sethostpid once at beginning of host program. Program will exit.

18



Appendix B: C Interface

The C interface is presented in style similiar to the one used in the iPSC/2 and

iPSC/860 Programmer's Reference Manual [1].

Synopsis

long cmpname( cubenamel, cubename2)

Parameter Declarations

char * cubenamel

char * cubename2

Return Value

1 if cubenamel matches cubename2, 0 otherwise.

Environment

Node

Discussion

Does not check for valid cube names.

Errors

None

19

!ili :_ _ i " _
_.: : H

" _ i:!:_ i,i_:_i_i'ii_'ii!I_I_



Synopsis

long cubemap( cubename, node)

Parameter Declarations

char * cubename

long node

Return Value

System node address for the node specified by (cubename, node).

Environment

Node

Discussion

Cubemap takes a cube name and logical node number as input parame-

ters and returns the system node address. The system node address can

then be passed to either the csend or isend communication routines. Be-

fore returning the system node address, cubemap verifies that the cube

is owned by the user and checks that the-node number is valid for that
cube.

Errors

cubemap: Invalid Cube Name

Use a valid cube name. Program will hang until killed by user.

cubemap: Invalid Node

Use a valid node number. Program will hang until killed by user.

2O

) ili i 'i ii



Synopsis

long cubesize(cubename)

Parameter Declarations

char * cubename

Return Value

Number of nodes in the cube specified by cubename.

Environment

Node

Discussion

May be called after initcubecon_m.

Errors

cubemap: Invalid Cube Name

Use a valid cube name. Program will hang until killed by user.

21



Synopsis

initcubeco_::m()

Parameter Declarations

None

Return Value

None

Environment

Host, Node

Discussion

On the host, initcubecomm freezes the number of cubes that are par-

ticipating in intercube communication, interrogates the operating system

for the system node addresses, fills the data structure and then downloads

it to all participating nodes.

On the nodes, it receives the data structure from the host.

Initcubecomm must be called on the host and nodes before performing

any communication.

Errors

None

:i

22



Synopsis

char *mycube()

ParameterDeclarations

None

Return Value

Characterstring containing the name of the local cube.

Environment

Node

Discussion

May be called after initcubeeomm.

Errors

None.

23

• _ _ _! 'i,il _:

..... • i

. 1_' i__I _ : _ iil l _i_iIIIi



Synopsis

long numeubes()

Parameter Declarations

None

Return Value

Number of cubes participating in intercube communication.

Environment

Node

Discussion

May be called after initcubecomm.

Errors

N6ne.

24



Synopsis

setactivecube(cubename)

ParameterDeclarations

char * cubename

Return Value

None

Environment

Host

Discussion

Setactivecube takes a cube name as an argument, verifies that the cube

is owned by the user, if it is the first instance of the cube name, registers

the cube, and then does an attach and setpid for that cube. Setac-

tivecube is called every time the the host wants to communicates with

a different cube.

Sethostpid must be called before the first call to setactivecube.

Errors

setactivecube: Invalid Cube Name

Use a valid cube name. Program will exit.

25



Synopsis

sethostpid(pid)

Parameter Declarations

long pid

Return Value

None

Environment e

Host

Discussion

Sethostpid records a single host process identifier that is used for all

cubes. The setpid function is called by setactivecube after attaching
to a cube.

Sethostpid must be called once before the first call to setactivecube.

Errors

sethostpid: Already Set Host PID

Use sethostpid once at beginning of host program. Program will exit.

26



Appendix C: FORTRAN Ring Example Host Code Modifications

parameter ( NUMCUBES = 2 )

character*IS cube(NUMCUBES)

character* 1 digit(0:9)

data digit/'0','l',... ,'9'/

do i = 1, NUMCUBES

cube(i) = "cube" //digit(i)

call getcube( cube(i),... )
end do

callsethostpid( pid )

do i= I, NUMCUBES

callsetactivecube(cube(i) )

callload( 'node',ALLNODES, NODEPID )

end do

call initcubecomm()

call

call

call

do i = 1, NUMCUBES

call setactivecube(cube(i) )

call killcube( ALLNODES, NODEPID )

call relcube(cube(i)
end do

stop
end

setactivecube(cube(l) )

csend( INITTYPE, msgbuf, MSGSIZE, 0, NODEPID

crecy( COUNTTYPE, msgbuf, CNTMSGSIZE )

27

............ • : ,: o:<



Appendix D: FORTRAI "_. Ring Example Node Code Modifications

parameter ( NUMCUBES = 2, INTERCUBE = 50 )

integer*4 cubemap

logical cmpname

character*15 cube(NUMCUBES)

character*15 name, mycube

character*l digit(0:9)

data digit/'0','l',... ,'9'/

do i = 1, NUMCUBES

cube(i) = "cube" //digit(i)
end do

call initcubecomm()

name = mycube()

if((mynode() .eq.O) .and. cmpname(name, cube(1))) then

else

if (mynode 0 .eq. 1) then

if (name .eq. cube(l)) then

call crecv(NODETYPE, msgbuff, MAXMSGSIZE )

rcnt = infocount()

node = cubemap(cube(2), 1 )

call csend(INTERCUBE, msgbuff, rcnt, node, 0)

call crecv(INTERCUBE, msgbuff, MAXMSGSIZE)

rcnt = infocount()

call csend(NODETYPE, msgbuff, rcnt, nextnode, nextpid)
else

call crecv(INTERCUBE, msgbuff, MAXMSGSIZE)

rcnt = infocount()

call csend(NODETYPE, msgbuff, rcnt, nextnode, nextpid)

call crecv(NODETYPE, msgbuff, MAXMSGSIZE)

rcnt = infocount()

node = cubemap(cube(l), 1 )

call csend(INTERCUBE, msgbuff, rcnt, node, 0)
endif

else

call crecv(NODETYPE, msgbuff, MAXMSGSIZE)

rcnt- infocount()

call csend(NODETYPE, msgbuff, rent, nextnode, nextpid)
endif

endif

28




